Skip to main content

🔥 Load Test LiteLLM

Load Test LiteLLM Proxy - 1500+ req/s​

1500+ concurrent requests/s​

LiteLLM proxy has been load tested to handle 1500+ concurrent req/s

import time, asyncio
from openai import AsyncOpenAI, AsyncAzureOpenAI
import uuid
import traceback

# base_url - litellm proxy endpoint
# api_key - litellm proxy api-key, is created proxy with auth
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234")


async def litellm_completion():
# Your existing code for litellm_completion goes here
try:
response = await litellm_client.chat.completions.create(
model="azure-gpt-3.5",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
)
print(response)
return response

except Exception as e:
# If there's an exception, log the error message
with open("error_log.txt", "a") as error_log:
error_log.write(f"Error during completion: {str(e)}\n")
pass


async def main():
for i in range(1):
start = time.time()
n = 1500 # Number of concurrent tasks
tasks = [litellm_completion() for _ in range(n)]

chat_completions = await asyncio.gather(*tasks)

successful_completions = [c for c in chat_completions if c is not None]

# Write errors to error_log.txt
with open("error_log.txt", "a") as error_log:
for completion in chat_completions:
if isinstance(completion, str):
error_log.write(completion + "\n")

print(n, time.time() - start, len(successful_completions))
time.sleep(10)


if __name__ == "__main__":
# Blank out contents of error_log.txt
open("error_log.txt", "w").close()

asyncio.run(main())

Throughput - 30% Increase​

LiteLLM proxy + Load Balancer gives 30% increase in throughput compared to Raw OpenAI API

Latency Added - 0.00325 seconds​

LiteLLM proxy adds 0.00325 seconds latency as compared to using the Raw OpenAI API

Testing LiteLLM Proxy with Locust​

  • 1 LiteLLM container can handle ~140 requests/second with 0.4 failures

Load Test LiteLLM SDK vs OpenAI​

Here is a script to load test LiteLLM vs OpenAI

from openai import AsyncOpenAI, AsyncAzureOpenAI
import random, uuid
import time, asyncio, litellm
# import logging
# logging.basicConfig(level=logging.DEBUG)
#### LITELLM PROXY ####
litellm_client = AsyncOpenAI(
api_key="sk-1234", # [CHANGE THIS]
base_url="http://0.0.0.0:4000"
)

#### AZURE OPENAI CLIENT ####
client = AsyncAzureOpenAI(
api_key="my-api-key", # [CHANGE THIS]
azure_endpoint="my-api-base", # [CHANGE THIS]
api_version="2023-07-01-preview"
)


#### LITELLM ROUTER ####
model_list = [
{
"model_name": "azure-canada",
"litellm_params": {
"model": "azure/my-azure-deployment-name", # [CHANGE THIS]
"api_key": "my-api-key", # [CHANGE THIS]
"api_base": "my-api-base", # [CHANGE THIS]
"api_version": "2023-07-01-preview"
}
}
]

router = litellm.Router(model_list=model_list)

async def openai_completion():
try:
response = await client.chat.completions.create(
model="gpt-35-turbo",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True
)
return response
except Exception as e:
print(e)
return None


async def router_completion():
try:
response = await router.acompletion(
model="azure-canada", # [CHANGE THIS]
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True
)
return response
except Exception as e:
print(e)
return None

async def proxy_completion_non_streaming():
try:
response = await litellm_client.chat.completions.create(
model="sagemaker-models", # [CHANGE THIS] (if you call it something else on your proxy)
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
)
return response
except Exception as e:
print(e)
return None

async def loadtest_fn():
start = time.time()
n = 500 # Number of concurrent tasks
tasks = [proxy_completion_non_streaming() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
print(n, time.time() - start, len(successful_completions))

# Run the event loop to execute the async function
asyncio.run(loadtest_fn())